

Reg. No.				

III Semester B.Sc. Degree Examination, March/April - 2021 STATISTICS - III

Statistical Inference - I

(CBCS Scheme Freshers & Repeaters 2019-20 & Onwards)

Paper: III

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

- 1. Answer any **Ten** sub-divisions from section A and any **Five** questions from Section B.
- 2. Scientific calculators are allowed.

SECTION-A

I. Answer any TEN sub-divisions from the following:

 $(10 \times 2 = 20)$

- 1. a) What is sampling distribution?
 - b) Define scale family of pdfs with an example.
 - c) Define asymptotic unbiasedness.
 - d) If t is an unbiased estimator of θ , then prove that t^2 is a biased estimator of θ^2 .
 - e) Define efficiency of an estimator.
 - f) State C-R inequality.
 - g) Obtain moment estimator of λ in Poisson distribution.
 - h) What is meant by pivotal quantity? Give an example.
 - i) Write confidence limits for the binomial proportion P.
 - j) Write confidence limits for the mean μ of normal distribution.
 - k) Write a note on simulation.
 - 1) Mention the advantages of simulation.

II. Answer any FIVE of the following questions.

 $(5 \times 10 = 50)$

- 2. a) Obtain mean and variance of chi square distribution.
 - b) Show that all odd-ordered central moments of t-distribution vanish (6+4)
- 3. a) Obtain mode of chi-square distribution.
 - b) Obtain the distribution of reciprocal of F-variate. (5+5)
- 4. a) Show that sample mean is an unbiased estimator of λ of poisson distribution.
 - b) State and prove sufficient conditions for the consistency of estimators. (4+6)
- 5. a) Obtain consistent estimator of μ in $N(\mu, \sigma^2)$ distribution, where σ^2 is known.
 - b) Obtain the relative efficiency of sample mean with respect to sample median, when the random sample is taken from a normal $N(\mu, \sigma^2)$ distribution. (4+6)
- 6. a) Obtain sufficient estimator of λ in $P(\lambda)$ distribution.
 - b) Obtain MVB estimator of μ in $N(\mu, \sigma^2)$ distribution. where σ^2 is known.

(4+6)

- 7. a) Obtain MLE of P in Bernoulli B(1,P) distribution.
 - b) Obtain moment estimators of α and β in $V(\alpha, \beta)$ distribution. (4+6)
- 8. a) Obtain $(1-\alpha)$ 100% confidence limits for Variance σ^2 of a normal distribution when μ is known.
 - b) Derive $(1-\alpha)$ 100% confidence limits for the difference of two population means $(\mu_1 \mu_2)$ when population variances are known. (5+5)
- 9. a) Explain a method of drawing random samples from normal distribution.
 - b) Describe the method of generating random samples from an exponential distribution. (5+5)