

11323

III Semester B.Sc. Degree Examination, March/April - 2021

MATHEMATICS

(CBCS Semester)

Paper: III

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer all questions.

PART-A

Answer any five questions.

 $(5 \times 2 = 10)$

- 1. a) Write the orders of the elements of the group $\{1, w, w^2\}$ with respect to multiplication.
 - b) Define right coset and left coset of a group.
 - c) Discuss the convergence of the sequence $\frac{\log n}{n}$.
 - d) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

- e) State Roabe's test for convergence of series.
- f) Prove that every differentiable function is continueous.
- g) Find the value of 'c', using Rolle's theorem for the function $f(x) = x^2 6x + 8$ in [2,4].
- h) Evaluate $\lim_{x \to \infty} \frac{x \sin x}{x^3}$

PART-B

Answer any **One** full question.

 $(1 \times 15 = 15)$

- 2. a) If 'a' is an element of order 'n' of a group G, 'e' is the identify, then for some positive integer m, $a^m = e$ if and only if 'n' is the devisor of m.
 - b) Find all the generators of the cyclic group of order 8.
 - c) State and prove Lagrange's theorem for finite groups.

(OR)

- 3. a) Find the order of each element of the group $G = \{0,1,2,3,4,5\}$ under \oplus_6 .
 - b) Prove that every subgroup of a cyclic group is cyclic.
 - c) Find all the distinct right cosets of the subgroup $H = \{0, 4, 8\} in(Z_{12}, \oplus_{12})$.

PART-C

Answer two full questions.

 $(2 \times 15 = 30)$

- **4.** a) If $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Prove that $\lim_{n\to\infty} a_n b_n = ab$.
 - b) Discuss the convergence of the sequences

i.
$$\left\{\frac{(-1)^{n-1}}{n}\right\}$$

ii.
$$\left\{ \left(\frac{n+1}{n} \right) \frac{3n^2}{n+1} \right\}$$

c) Find the limit of the sequence 0.4,0.44,0.444,....

(OR)

- 5. a) Prove that every convergent sequence is bounded.
 - b) Prove that the sequence $\left\{\frac{3n+4}{2n+1}\right\}$ is monotonically decreasing and converges to $\frac{3}{2}$.
 - c) Prove that a monotonically increasing sequence which is bounded above is convergent.
- 6. a) State and prove Cauchy's root test for the convergence of series of positive terms.
 - b) Discuss the convergence of the series $\frac{1}{3} + \frac{2^3}{3^2} + \frac{3^3}{3^3} + \frac{4^3}{3^4} + \dots$
 - c) Find the sum of infinity of the series

$$1 + \frac{4}{6} + \frac{4.5}{6.9} + \frac{4.5.6}{6.9.12} + \dots$$

(OR)

7. a) Discuss the convergence of the series

$$\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots$$

b) Test the absolute, conditional convergence of the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

c) Find the sum to infinity of the series

$$1 + \frac{1+5}{2!} + \frac{1+5+5^2}{3!} + \dots$$

PART-D

Answer one full question.

 $(1 \times 15 = 15)$

- 8. a) Discuss the differentiability of the function at x = 0 if $f(x) = \begin{cases} 1 + 2x for x \le 0 \\ 1 3x for x > 0 \end{cases}$
 - b) State and prove Lagrange's Mean value Theorem.
 - c) Evaluate
 - i. $\lim_{x \to 0} \frac{\log(\tan x)}{\log(x)}$
 - ii. $\lim_{x \to \frac{\pi}{2}} (\sec x \tan x)$

(OR)

- 9. a) Discuss the continuity of the function f(x) at x = 2 if $f(x) = \begin{cases} 1 + x for x \le 2 \\ 5 x for x > 2 \end{cases}$
 - b) Find the Maclaurins series expansion of log(secx) upto the term containing x4.
 - c) Evaluate
 - i. $\lim_{x\to 0} \frac{a^x b^x}{x}$
 - ii. $\lim_{x\to 0} (1+\sin x)^{\cot x}$