

					12120		
Reg. No.	offic	an p	g gra	125	OW	nA,	

I Semester B.Sc. Degree Examination, August - 2021 MATHEMATICS

Mathematics - I

(CBCS Semester Scheme)

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer all questions.

I. Answer any Five questions.

 $(5 \times 2 = 10)$

- 1) Define rank of a matrix A of order $m \times n$.
- 2) Show that the system of equations x+2y+z=0, x-2z=0, 2x+y-3z=0 has only trivial solution.
- 3) Find the n^{th} derivative of $\sin^2 x$.
- 4) If $u = x^2 y$, prove that $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$.

- 5) Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin^8 x \, dx$.
- 6) Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin^6 x \cos^5 x \, dx$.
- 7) Find the value of k such that the spheres $x^2 + y^2 + z^2 + 4x + ky + 2z + 6 = 0$ and $x^2 + y^2 + z^2 + 2x 4y 2z + 6 = 0$ are orthogonal.
- 8) Find the equation of the right circular cone whose vertex is (1,2,3), axis is the y-axis and semi vertical angle is 30°.

II. Answer any Three questions.

 $(3 \times 5 = 15)$

- 9) Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$ by reducing to normal form.
- 10) Test the system of equations x+2y-z=3, 3x-y+2z=1, 2x-2y+3z=2 for consistency and solve if possible.
- 11) Find the eigen values and corresponding eigen vectors of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.
- 12) State and prove Cayley Hamilton Theorem.
- 13) By using Cayley Hamilton Theorem, find the inverse of the matrix $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$.

III. Answer any Three questions.

(3×5=15)

- 14) Find the nth derivative of $\frac{4x}{(x+1)^2(x-1)}$.
- 15) If $y = e^{m \sin^{-1} x}$ prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$.
- 16) If $Z = \sin(ax + y) + \cos(ax y)$, prove that $\frac{\partial^2 Z}{\partial x^2} = a^2 \frac{\partial^2 Z}{\partial y^2}$.
- 17) State and prove Euler's Theorem for a homogeneous function of two variables.
- 18) If $x = r\cos\theta$, $y = r\sin\theta$, find $J = \frac{\partial(x,y)}{\partial(r,\theta)}$ and $J' = \frac{\partial(r,\theta)}{\partial(x,y)}$. Also verify JJ' = 1.

IV. Answer any Two questions.

 $(2 \times 5 = 10)$

- 19) Obtain the reduction formula for $\int \cos^n x \, dx$.
- 20) Evaluate: $\int_{0}^{\infty} \frac{x^2}{\left(1+x^2\right)^3} dx$.

21) Using Leibnitz's rule, evaluate $\int_{0}^{\infty} e^{-x} \frac{\sin \alpha x}{x} dx$, where α is a parameter.

V. Answer any Two questions.

 $(2 \times 5 = 10)$

- Obtain the equation of the sphere which passes through the points (1,0,0), (0,1,0), (0,0,1) and having its centre on the plane 3x-y+z=2.
- 23) Find the equation of the right circular cone which passes through the point (1,1,2), has its vertex at the origin and its axis is $\frac{x}{2} = \frac{-y}{4} = \frac{z}{3}$.
- 24) Find the equation of the right circular cylinder of radius 2 units and whose axis is $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}.$

VI. Answer any Two questions.

 $(2 \times 5 = 10)$

- 25) Suppose in a stationery shop books, pens and pencils are sold with 3 books, 2 pens and 1 pencil cost Rs. 140, 2 books, 2 pens and 2 pencils cost Rs. 170, 1 book, 3 pens and 2 pencils cost Rs. 180. Find whether each item has a fixed price or each item has different prices or it is not possible to find the price of the items.
- 26) The population grows at the rate of 5% per year. How long does it take for the population to double?
- 27) A particle of mass 3 units is moving along the space curve defined by $\vec{r} = (4t^2 + t^3)\hat{l} + 5t\hat{j} + (t^3 + 2)\hat{k}$. Find
 - i) The momentum and
 - ii) Force acting on it at t=2.

